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• Imaginary axis for analog filters corresponds to unit circle for digital filters
• Several standard mappings used to map between s-domain and z-domain
• Some actually map imaginary axis to unit circle

Review from last lecture
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Review from last lecture



Digital Filter Properties

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

Moving Average  Filters

( ) ( )
0=

= −
m

i
i

y nT a x nT iT

Impulse Input

1

kT

1 2 3 4-1-2 0

Impulse Response

Impulse response often symmetric around “m/2”

kT

0

a0

a4

Y
a5

a3

a2a1

a6
a7 a8 a9

m odd

kT

0

a0

a4

Y a5

a3

a2a1

a6

a7
a8 a9

m even

a10



Digital Filter Properties

ADC DAC
Digital Filter

H(z)
XIN(t) XOUT(t)

X(kT) Y(kT)

( ) -

0

H z a z
=

= 
m

i
i

i

Moving Average Filters

( ) ( )
0=

= −
m

i
i

y nT a x nT iT

It can be shown that

( ) ( ) ( ) ( ) ( )
0

m

def
k

y n x n h n h k x n k
=

=  = −

FIR filters are sometimes termed  convolutional filters
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FIR Filters can be easily designed to have linear phase

Example:   m=7
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Example:   m=7
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FIR Filters can be easily designed to have linear phase
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FIR Filters can be easily designed to have linear phase

Regrouping, we obtain
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It thus follows that

Thus H(z) is linear phase ! 

This property holds for any symmetric impulse response of a FIR filter of any order



Digital Filter Properties

It is easy to design linear phase digital filters
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Theorem:   Any FIR filter is linear phase if the impulse response is symmetric 
or antisymmetric

Table from Robert Novak book
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Theorem:   Any FIR filter is linear phase if the impulse response is symmetric 
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Table from Robert Novak book
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• Delay operations or delay filters are easily implemented with digital filters

• Delay for each delay element is one clock period
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An Implementation of a Digital Filter

An Implementation of an Analog  Filter
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• Can be viewed as analogous implementations
• Neither particularly practical
• Many other architectures for both analog and digital filters
• Approximately double the number of integrators or delay elements needed
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An Implementation of a Digital Filter

An Implementation of an Analog  Filter
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Alternate  Implementations of an Digital  Filter

• Reduced number of delay elements by factor of 2
• Still not  particularly practical
• Similar architectural change can be made for analog  filter (next slide)
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Alternate  Implementations of an Analog  Filter

I(s)

Integrator

• Reduced number of integrators by factor of 2
• Still not  particularly practical
• Similar architectural change for digital filter (previous slide)
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Alternate Implementations of an FIR  Digital Filter
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Alternate Implementations of IIR  Digital Filter
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Excessive delay elements but not of as much concern as excessive Integrators
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Does Digital Filter Overcome Limitations
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A    - Transfer functions sensitive to component and process variations

D     - Transfer function part of H(z) not  sensitive to process variations
- Transfer function sensitive to coefficient quantization
- ADC and DAC minimally sensitive to process variations but highly sensitive  
to missmatch

A   - Distortion inherent due to nonlinearities in components (particularly amplifiers)

D     - Transfer function part of H(z) not  sensitive nonlinearity of components
- ADC and DAC sensitive to nonlinearity of components 

A      - Power dissipation can be large

D     - Power dissipation can be large due to a large number of arithmetic operations 
during each clock cycle

- ADC and DAC dissipate considerable energy for high resolution or high speed



Does Digital Filter Overcome Limitations
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A    - Area gets large, often unacceptably so for very low frequency poles and even of
concern for audio-frequency poles

D    - Area for DSP in Digital Filter can be large
- ADC and DAC can become large if high resolution is required
- No area penalty for low frequency operation of digital system

Analog  Filter

T(s)
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A   - Programmability introduces considerable complexity (with existing approaches)

D     - Programmability of filter characteristics is very efficient with digital filter approach

A     - Making minor changes in filter requirements often necessitates a major
redesign effort

D      - Making minor or even major changes in filter requirements requires minimal 
effort with digital filter approach



Digital Filter Design Issues
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Order of Digital Filters Can be Large

• 128 or more delay elements are not uncommon
• Can achieve very steep transitions from passband to stop band
• High Q poles can be practically realized
• Particularly attractive for filtering low-frequency signals
• Large number of adds and multiplies slows response of the filter
• ARMA filters invariably are of lower order than FIR filters for given 

transition requirements
• FIR filters inherently stable
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Architectural Issues
• Many different filter architectures
• Must be sure to not overflow registers during intermediate calculations
• Order of operations for given architecture can affect performance
• Coefficient sensitivity can be high
• Number of bits of resolution on coefficients affects multiply and add 

times
• Some work on filters where all coefficients are power of 2 (multiplies 

become simply shifts)
• Concerns about how many intermediate memory locations are 

required
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• May not be easy to assess overflow concerns without overdesign since 
intermediate totals dependent upon input

• Architecture affects number of arithmetic operations
• Large number of operations can introduce noise into substrate which of 

concern with systems with  extreme SNR where ADC and DAC are on-chip
• Some architectures and some approximations naturally support parallel 

operations
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General Comments
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• Extreme precision possible with right order and good implementation
• Time and amplitude quantization both affect performance
• Not practical for applications that have very high frequency poles (due to both 

data converter and filter limitations)
• Power dissipation can be large if many arithmetic operations are required
• May not be easy to assess overflow concerns without overdesign since 

intermediate totals dependent upon input
• ADC and DAC design efforts can be substantial
• ADC and DAC may require considerable area and power
• Significant effort in design of computer or DSP to drive the digital filter
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• Though process variations in digital filter not of concern, they do affect the 
ADC and DAC designs beyond matching (e.g. clock skew)

• Big step in area and power to implement the DSP and filter
• Switched Capacitor filters have some properties of a digital filter (time-

quantization and thus H(z) instead of T(s)) and some of analog filters but 
overhead for implementing a lower-order filter with SC techniques is 
relatively small

• DAC often not required since decisions are often made in digital logic and no 
subsequent analog output is required

• One (of many) applications that favor use of digital filters is in output filtering 
and decimation in delta-sigma ADCs
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• Digital filters are vulnerable to aliasing
• Digital filters are expensive
• Digital filters limited to relatively low frequency operation (due to both the 

data converters and the adds/multiplies)
• Digital filter intermediate results can be stored for later analysis
• The H(z) portion of the digital filter benefits from technology scaling
• The H(z) portion does not drift with time or temperature
• H(z) can be easily tweaked or even modified with software
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• Implementations of digital filters in FPGAs appears to be a topic of interest 
itself

• Digital filter design a significant component of the topic of digital signal 
processing

• Entire graduate level course could be dedicated to topic of digital filter design
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Analog vs Digital Filter

• Both approaches have advantages and limitations
• Digital filters particularly attractive if DSP already available and if ADC and DAC are 

necessary for other purposes or if decisions in system must be made in the digital 
domain

• Digital filters also attractive if much of the signal processing will occur in the digital 
domain of a system

• Digital filters have replaced analog filters in many applications
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